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( Symbols have th

Answer Question 

1. Answer any five questions :

 a) Prove that a Topological space 

X has a cluster point.

 b) Prove that any Frechet compact 

 c) Is the family  (

 d) Show that every closed subset of a para

compact. 

 e) Is the real number space endowed with lower limit topology 

metrizable ? Answer with reason.

 f) In an uniform space give an example of a set which is totally 

bounded but not compact.

 g) Prove that a disc

2. a) Prove that metriz

 b) Let X be a Tychoroff space. It 

for every compactification 
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Question No. 1 and any four from the rest : 

questions : 2 

Prove that a Topological space ),( X is compact if every filter in              

has a cluster point. 

Prove that any Frechet compact 
1

T -space is countably compact.

  nnn ),  locally finite ? Answer with reason

Show that every closed subset of a para-compact space 

number space endowed with lower limit topology 

Answer with reason. 

In an uniform space give an example of a set which is totally 

bounded but not compact. 

Prove that a discrete topological space is para-compact.  

Prove that metrization is invariant under homeomorphism.

be a Tychoroff space. It X is locally compact then prove that 

for every compactification ),( Yf of X,  )(\ XfY  is closed. 
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 5 = 10 

compact if every filter in              

  

countably compact. 

Answer with reasons.   

compact space is para- 

number space endowed with lower limit topology 

In an uniform space give an example of a set which is totally 

ation is invariant under homeomorphism. 5 

is locally compact then prove that 

 5  
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3. a) Give an example of a compact H

sequentially compact.

 b) Prove that a closed subspace of a 

compact. 

4. a) State and prove Stone

 b) Give examples to justify that two compa

topological space may 

5. a) Show that every H

 b) Show that for every positive integer 

topology is metrizable.

6. a) Show that every compact subset of a uniform space 

bounded. 

 b) Let ),( uX  and 

continuous.  If 

continuous. 

7. a) Let ),( X  be a completely regular space. The show that there 

exists a proximity 

 b) Show that every open 

has a locally finite refinement.
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n example of a compact Hausdorff space that is not 

sequentially compact. 

Prove that a closed subspace of a locally compact space is locally 

State and prove Stone-Cech theorem. 

Give examples to justify that two compactifications of a given 

al space may not be homeomorphic. 

Show that every Hausdorff para-compact space is regular.

or every positive integer n,  with the product 

metrizable. 

Show that every compact subset of a uniform space is

and ),( qY  be uniform spaces and let Xf :

continuous.  If X is compact, then show that f is uniformly 

be a completely regular space. The show that there 

exists a proximity   on X compatible with the topology  . 

Show that every open  -locally finite cover of a topological space 

locally finite refinement. 

  

 

e that is not 

4   

locally compact space is locally 

6 

8 

of a given 

2  

compact space is regular. 5  

with the product 

5 

is totally 

4 

YX  be 

uniformly 

6  

be a completely regular space. The show that there 

 6 

locally finite cover of a topological space 

4 


